Study: Evidence for Grape Seed Extract Use in the Prevention of Hypertension

From PubMed.gov …

Extracts enriched in different polyphenolic families normalize increased cardiac NADPH oxidase expression while having differential effects on insulin resistance, hypertension, and cardiac hypertrophy in high-fructose-fed rats.

Insulin resistance and oxidative stress act synergistically in the development of cardiovascular complications. The present study compared the efficacy of three polyphenolic extracts in their capacity to prevent hypertension, cardiac hypertrophy, increased production of reactive oxygen species (ROS) by the aorta or the heart, and increased expression of cardiac NAD(P)H oxidase in a model of insulin resistance. Rats were fed a 60%-enriched fructose food and were treated once a day (gavage) for 6 weeks with 10 mL/kg of water only (F group) or the same amount of solution containing a red grape skin polyphenolic extract enriched in anthocyanins (ANT), a grape seed extract enriched in procyanidins and rich in galloylated procyanidins (PRO), or the commercial preparation Vitaflavan (VIT), rich in catechin oligomers. All treatments were administered at the same dose of 21 mg/kg of polyphenols. Our data indicate that (a) the ANT treatment prevented hypertension, cardiac hypertrophy, and production of ROS, (b) the PRO treatment prevented insulin resistance, hypertriglyceridemia, and overproduction of ROS but had only minor effects on hypertension or hypertrophy, while (c) Vitaflavan prevented hypertension, cardiac hypertrophy, and overproduction of ROS. All polyphenolic treatments prevented the increased expression of the p91phox NADPH oxidase subunit. In summary, our study suggest that (a) the pathogeny of cardiac hypertrophy in the fructose-fed rat disease involves both hypertension and hyperproduction of ROS, (b) polyphenolic extracts enriched in different types of polyphenols possess differential effects on insulin resistance, hypertension, and cardiac hypertrophy, and (c) polyphenols modulate the expression of NAD(P)H oxidase.

Source:
Al-Awwadi NA, Araiz C, Bornet A, Delbosc S, Cristol JP, Linck N, Azay J, Teissedre PL, Cros G.   Extracts enriched in different polyphenolic families normalize increased cardiac NADPH oxidase expression while having differential effects on insulin resistance, hypertension, and cardiac hypertrophy in high-fructose-fed rats. J Agric Food Chem. 2005 Jan 12;53(1):151-7.